Markov model-based phoneme class partitioning for improved constrained iterative speech enhancement

نویسندگان

  • John H. L. Hansen
  • Levent M. Arslan
چکیده

171 A. Benyassine and H. Abut, “Mixture excitations and finite-state CELP speech coders,” in Proc. IEEE ICASSP., Mar. 1992, pp. 1-345-1-348. P. Krmn and B. S. Atal, “Strategies for improving the performance of CELP coders at low bit rates,” in Proc. IEEE ICASSP, Apr. 1988, pp. 151-154. P. moon and B. S. Atal, “On the use of pitch predictors with high temporal resolution,” IEEE Truns. Acoust., Speech, Signal Processing, vol. 39, no. 3, pp. 733-735, 1991. C.-C. Kuo, F.-R. Jean, and H.-C. Wang, “Low bit-rate quantization of LSP parameters using two-dimensional differential coding,” in Proc. IEEE ICASSP, Mar. 1992, pp. 1-97-1-100.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Model Based Phoneme Class Partitioning for ImprovedConstrained Iterative Speech

Research has shown that degrading acoustic background noise innuences speech quality across phoneme classes in a non-uniform manner. This results in variable quality performance of many speech enhancement algorithms in noisy environments. A phoneme classiication procedure is proposed which directs single-channel constrained speech enhancement. The procedure performs broad phoneme class partitio...

متن کامل

Minimum cost based phoneme class detection for improved iterative speech enhancement

It is known that degrading acoustic noise innuences speech quality across phoneme classes in a non-uniform manner. This results in variable quality performance for many speech enhancement algorithms in noisy environments. To address this, a hidden-Markov-model phoneme classiica-tion procedure is proposed which directs single channel speech enhancement across individual phoneme classes. The proc...

متن کامل

Class constrained ROVER based speech enhancement

A phoneme class based speech enhancement algorithm is proposed that is derived from the family of constrained iterative enhancement schemes. The algorithm is a Rover based solution that overcomes three limitations of the iterative scheme. It removes the dependency of the terminating iteration, employs direct phoneme class constraints, and achieves suppression of audible noise. In the Rover sche...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Speech and Audio Processing

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1995